Neurophysiology & EEG

PG4 Core Curriculum

Ian A. Cook, M.D.
Associate Director, Laboratory of Brain, Behavior, & Pharmacology
UCLA Department of Psychiatry & Biobehavioral Sciences
Semel Institute for Neuroscience and Human Behavior

EEG Signals

- The brain is an electrochemical organ
- Post-synaptic potentials arise in neurotransmission; voltage gradients give rise to current flows, which generates a magnetic field as well as a voltage waveform at the scalp
- Most of the signal measured at the scalp comes from the apical dendrites of the cortex, near the recording electrode
- Summation in space and time, reflecting some degree of coordinated volleys of activity

http://www.mrc-cbu.cam.ac.uk/EEG/doc/eeg_intro.shtml

EEG Waveforms

- Classic interpretation involves inspection and description of the waveforms and their frequency and morphology (shape)
- Scalp EEG signals can range from around 0.5 Hz to 100s of Hz; pen-and-paper polygraphs were challenged to record that fast
- Reflect neural events on the millisecond timescale; closer to the primary actions of the brain than metabolic or perfusion measures

Frequency Bands

- Alpha 8-13 Hz
- Beta >13 Hz
- Theta 4-8 Hz
- Delta <4 Hz
Background Rhythms

- Normal waking EEG
 - Posterior alpha
 - Anterior beta
- Excess slowing
 - Theta & Delta
 - Focal or diffuse (generalized)

Paroxysmal Discharges

- Spike & wave epileptiform discharges
- More common in children but can be seen at all ages
- Occur synchronously & bilaterally in generalized epilepsies; focally in partial epilepsies
- Absence / Petit mal - think of 3/sec spike-and-wave
- Slower rate - think brain injury
- Polyspike & wave - faster (3.5-4.5/sec)
- Think myoclonus or myoclonic seizures

PLEDS

- Periodic Lateralizing Epileptiform Discharges
- Often herald acute, localized brain injury or damage
- Especially likely if metabolic derangement as well
- Seen with cerebrovascular dis.

TRIPHASIC WAVES

- Triphasic waves (down-up-down)
- Classically associated with encephalopathy, esp. hepatic

Vertex waves (V-Waves)

- Sharp or even spike discharge that occurs symmetrically around the midline / vertex
- Often seen in stage II sleep

K Complex - vertex wave plus sleep spindle

- Common in stage II sleep
- Sleep spindles
 - Fast activity (12-14Hz) with envelope
 - Present over both hemispheres

- Slow Wave Sleep
 - Stages III and IV

EEG Report or Interpretation

- Description of technique
 - Conditions observed (waking, drowsy, sleep stage)
 - Was patient sleep deprived? Sedated?
 - Activation procedures? (hyperventilation, photic)
- Overall: normal or abnormal?
- Description of background rhythms
 - Posterior dominant rhythm - in alpha range?
 - Low voltage fast activity - normal variant
 - Intermixed slow wave (theta delta) activity
 - Focal or Generalized (diffuse)
 - State-specific findings? (K complexes, spindles)

EEG Report or Interpretation

- Description of Paroxysmal Discharges
 - Morphology (spike, sharp wave, spike & wave)
 - Topography (generalized, focal, multifocal, lateralized, synchronous)
 - Frequency (3/sec, 14-and-6)
 - In which states of arousal are they present?
 - Correlation with simultaneous clinical observations (movements, changes in LOC)
Sleep Pattern of Patients With Major Depression

Event-Related Potentials (ERPs)

- Event-related potentials or evoked potentials (EPs) are small voltage signals from a stimulus
- Computer averages epochs, synchronized to repetitions of the same event (sensory, cognitive, motor action)
- Spontaneous brain activity is averaged out.
- Characteristic shapes and delays to waveforms

Fourier Transform: The inner product

- Original signal
- Fourier transform
Quantitative EEG

Computer processing converts time-varying signals to power spectrum measures: how much energy in which band in which region?

Prefrontal Decreases in M-R

Cook et al., Neuropsychopharmacology 2002

Source Localization & LORETA

- Low resolution brain electromagnetic tomography
- Solve the “inverse problem” of where are the “generators” of the surface EEG signals

Pretreatment Features

- Pizzagalli built on the PET work from Mayberg (1997) and Wu (1999), by using LORETA - low resolution electromagnetic tomography, with 18 adults treated with nortriptyline for MDD.
- Theta activity in the rostral-most anterior cingulate (Brodmann 32, 24, some of 10) was related to outcome - better response accompanied higher pretreatment values (but only 2 NR)

Pizzagalli et al., Am J Psychiatry 2001